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Abstract-An approximate direct method for solving linear and nonlinear heat conduction problems, 
based on the Gauss’s principle of least constraint is presented. In every particular case, the problem is 
reduced to the algebraic minimization of a quadratic form with respect to some complex of physical 
parameters. By the help of several concrete examples the efficiency and accuracy of this new method 

is demonstrated. 

NOMENCLATURE 

acceleration; 
characteristic length; 
specific heat ; 
percentage error; 
force; 
Fourier number at/l2 ; 
coefficient ; 
convective heat-transfer coefficient; 
complex representing the component of 
spatial change of temperature distribution; 
thermal conductivity; 
latent heat of melting; 
characteristic length; 
mass ; 
penetration depth; 
position vector; 
time; 
nondimensional temperature; 
velocity; 
complex representing the component of 
temporal change of temperature distribution; 
length coordinate; 
nondimensional length x/l; 
spatial change of temperature distribution 

(10); 
length coordinate; 
nondimensional length y/b; 

temporal change of temperature distribution 
(10); 
Gauss’s constraint. 

Greek symbols 

thermal diffusivity ko/po co ; 

melting constant; 
Lagrange multiplier; 
= 2(&J -B&o/L; 
location of melting line; 
density; 
constant specifying the dependence of k on T; 

Stefan-Boltzmann constant in example C; 

8, temperature; 
0 P’ temperature of phase change. 

Subscripts 

0, refers to initial values ; 
ft refers to the fluid; 
m, refers to the surrounding medium; 
S, refers to the surface of the body. 

1. INTRODUCTION 

THE USE ofvariational methods for obtaining solutions 
of transport phenomena has become an indispensable 
tool in the domain of nonlinear conduction. Many 
publications dealing with variational principles of 
various kinds have appeared in the technical literature 
in the past 20 years. Roughly speaking, all variational 
principles in use at the present time in the study of 
heat transfer, are built up in formal analogy with known 
principles of classical mechanics. This fact confirms 
the claim of Heisenberg that: “Mechanics could be a 
model and a basis for all other fields of science .” 
([ 11, p. 89). The most popular principles of mechanics 
which are advantageously used in many branches of 
engineering as a starting point for the direct calculation 
are the D’Alambert’s principle of virtual work and 
Hamilton’s principle of stationary action. In addition, 
when a physical problem is stated in the form of 
Hamilton’s principle it becomes a variational problem 
in the sense of variational calculus. The direct methods 
applied on the D’Alambert’s principle are generally 
known as the Galerkin’s method, while the numerous 
direct computations based on the Hamilton’s principle 
are known as Ritz’s method, method of partial 
integration, Rayleigh’s method etc. 

In this paper we shall study the possibility of appli- 
cations of Gauss’s principle of least constraint to the 
nonlinear heat transfer. This principle is a true mini- 
mum principle in contrast with the two aforementioned 
principles of D’Alambert and Hamilton, which are 
generally not the minimum principles.* Contrary to 

*The variational principle of Hamilton may be occasion- 
ally a true minimum principle. 
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the general impression that the Gauss’s principle is of 
purely theoretical interest in classical (point) mechanics, 
the purpose of this, and the previous article [2] is, to 
point out that this principle can lead to considerable 

practical advantages in nonlinear heat transfer. 

2. GAUSS’S PRINCIPLE 

For the sake of clarity we will briefly describe the 
Gauss principle of ordinary mechanics in a form 
suitable for applications in heat transfer. 

Consider a free dynamical system of n particles, sub- 
ject to impressed forces Fi(i = 1,2,. , n). If mi are 
masses, ri position vectors and ai = d’ri/dt* acceler- 
ations, the differential equations of motion are 

m;ai-Fi = 0. 

Let us introduce the quantity* 

(1) 

Z = 4 1 (Fi-miai)’ 
i=1 

and suppose that the configuration (ri), velocity (vi) 
and forces (Fi) of the system are prescribed at time t, i.e. 

6ri = 0. 6Vi = 0, 6Fr = 0 (3) 

and the remaining “complex”-mini is then the only 
one to be varied, i.e. 

G(miai) # 0. (4) 

The Gauss’s principle of least constraint states that 

under the conditions (3) and (4) the quantity Z can 
assume its absolute minimum, which is zero. The proof 
is simple. If (-miai) represents the actual inertial force, 
and -miai+6(mia,) represents any other possible in- 

ertial force, we have : 

fiZ = 4 i {[F;-miai+6(mia;)Tj2-(Fi-miai)‘} 
i=l 

= 4 i$l [h(miai)]* + i F,-miai)fihiai) 
i=l 

(5) 

and the last term vanishes in virtue of (1). Thus 

6Z > 0 (6) 

unless G(miai) is zero. 
As a second possibilityt of achieving the absolute 

minimum of “constraint” Z defined by (2) we can 
suppose that the configuration, velocity and acceler- 
ation of the system are prescribed at time t and the 
impressed force Fi is then only one to be varied, i.e. 

Sr, = 0, 6~; = 0, 6(miai) = 0, 6Fi # 0. (7) 

If the system in question is subject to holonomic or 
nonholonomic constraints the constraint Z is in mini- 
mum again but introduction of Lagrange’s undeter- 
mined multipliers is necessary. 

We will show now how one can treat the equations 
of nonlinear heat transfer in the same way as the 
dynamical systems discussed above. 

*In the original version of Gauss’s principle the expression 
in the parenthesis of (2) is multiplied by the factor 1 /mi, 

tFor more details see [2]. 

Consider the nonlinear equation of heat conduction 
_I 

div(k . grad T) - pc’ ‘;T = 0. (8) 

where p is the density, k(T) and c(T) are the thermo- 

physical coefficients which are supposed to be the 
functions of temperature T. 

Consider the heat-transfer analog of equation (2): 

z= s [X- Y]*dV 
” 

(9) 

where V is the volume which is engaged in the process 

of heat transfer and 

X = div(k ‘grad T) 

are spatial and temporal parts respectively. As in the 

previous case the following two variational rules for 

minimizing (9) are possible 

and 

6X # 0, 6Y=O (11) 

6X = 0, 6YZO. (12) 

This variational principle may be formulated by means 
of the generalized coordinates instead of the com- 

ponents of the field itself. In numerous problems it is 
possible to guess that a solution belongs to a family 
of functions with one or more unknown parameters, 
which is more or less characteristic feature for all 

approximate methods. In each particular case we must 

be able to identify the characteristic complex of 
parameters which represent X or Y and minimization 

of Z has to be performed with respect to one of these 

complexes. The method proposed is very simple 
because the whole technique for obtaining approximate 
solution is of the algebraic nature-minimization of a 
quadratic form with respect to a complex. If some of 

generalized coordinates are coupled by one or more 
algebraic ‘relations the minimization of Z should be 

performed using Lagrange’s undetermined multipliers. 
The efficiency of the method can be illustrated by 

obtaining approximate solution of a simple linear 
heat-transfer problem. 

Consider a one-dimensional thermally insulated 
semi-infinite body with constant thermo-physical coef- 

ficients p = po, c = co and k = ko. The body is initially 
at the temperature T = 0. At t = 0 the face of the body, 
located at x = 0, is suddenly brought to a constant 
temperature T = To. Mathematically the problem is to 
solve following boundary-value problem 

(13) 

where u = ko/poco, together with 

T(0, t) = To; T(x, 0) = 0. (14) 

Following the concept of the penetration depth assume 
the solution in the form 

2 

where q(t) is penetration depth. 

(15) 
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Let us solve the problem minimizing the constraint: It should be noted that the Gauss principle of least 
constraint has been applied on the linear heat- 
conduction problems by Samoilovich in [3]. However, 
the author deals with a transformed form of the basic 

with respect to the temporal part lJT/dt. From (15) heat conduction equation similar with the Biot’s quasi- 
we have variational method. 

It is the purpose of this note to show that the 
Gauss’s principle can be applied directly on the govern- 

d2T 2T0 ---=_ 
8x2 q2 

(17) ing heat-conduction equations, and in addition, the 
nonlinear problems are generally treated in the same 
way as the linear ones. 

As was shown above, the applications of direct 

W2 
methods, using Gauss’s principle are simple and 

(18) straightforward. In the next section several more 
4 complex examples will be presented. 

is the “temporal complex” with respect to which we 
will minimize the expression (16). Substituting (17) into 3. EXAMPLES 

(16) integrating and retaining only the terms with W (A) Unsteady two-dimensional nonlinear heat 

we have conduction through the prism-like injinite bodies 
with a given cross section 

As the first example we shall study the temperature 
distribution through the prism-like infinite bodies. The 

where a constant multiplicative factor has been omitted. thermal conductivity is supposed to be a linear function 
Minimizing (19) with respect to W, i.e. of temperature hence the differential equation is of the 

ww o 

form 
-= 

aw 

and using (18) we find the following differential equation 

;-a; (l+crT)g -a” (l+ciT)g =0 (25) 
[ 8x1 A i.Yl 

qlj = 5ci 
where CI and Q are given constants. 

Initially, the body is at the uniform temperature, i.e. 
the solution of which, with respect to the initial con- 
dition q(0) = 0 is 

T(0, x, y) = To = const. (26) 

q = J( lOat). (20) 
and the surfaces of the body are maintained at the 
zero temperature 

Finally let us use the second possibility, minimizing (16) 
with respect to the spatial complex 

T(r, x, ~1 Is = 0 (27) 

X=a$=2KT0 

where Is is the symbol for the external surfaces of the 

(21) prism. Consequently the problem is to find the approxi- 
mate solution of (25) in the presence of initial and 

where boundary conditions (26) and (27). 

K = a/q’. (22) 
The suitable form of the trial solution will be: 

Introducing T = ~(W(x, Y) (28) 

where B(x, y) is a specified function of the position 
which has to be chosen in accordance with the shape 

and (21) into (16), retaining the terms with K, we have 
of the cross section of the body. The function B(x, y) 

after integration 
has the following properties: B(x, y)js = 0, and 
B(x, y) > 0 for every x and y inside the region bounded 

Z(K) = K’q-:Kcj (23) by S. Hence, the problem is reduced on finding the 

where a constant multiplicative factor has been omitted. 
unknown function of time 4(t), using the Gauss’s 

The equation aZ(K)/dK = 0, together with (22) will 
principle. 

yield the equation 
Let us consider the constraint in the same sense of 

Gauss : 
q4 = 6a 

i.e. 

q = J( 12crt). (24) 

These two results (20) and (24) are in good agreement 
with the exact solution. Besides, they are identical with 

-rr$[(l+aT)g]jZdxdy (29) 

the approximate solutions obtained by the Galerkin where (x0, yo) and (xi, ~1) are to be selected in accord- 
and integral methods respectively. ance with the contour in question. 
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The minimization of Z will be performed with respect 
to the temporal “complex” $. Introducing (28) into 
(29), integrating, and omitting all terms not containing 
6, we find : 

z = I, fjJ2-2a1*&j-2ua13~2~ (30) 

where 

P(x, y)dxdy; 

The condition 

dZ 

a$ -O 

yields the differential equation 

II f$-12a$-aoI~~2 = 0. 

(31) 

(32) 

The initial condition $(O) will be determined by mini- 
mizing the initial square residual of the form: 

*I J= 
ss 

‘I [To-4(O)B(x,y)]‘dxdy 
X0 Pi, 

with respect to the arbitrary constant of the general 

solution of differential equation (32).* 
As the particular examples we will consider two 

characteristic shapes of cross section. 
(a) The triangle. Consider the triangular cross-section 

bounded by x = 0, y = 0, x + y- 1= 0. For this case 

the trial solution is supposed to be of the form : 

hence 

j”=qqt) 1-f-S f; 
i 1 

and the limits of integration in (31) are 

x0 = yo = 0, x1 = 1, y1= I-x. 

Integrating 

we have 

$= 
- exp( - 56at/12) 

6 exp( - 56at/IZ) + g 

(33) 

(34) 

(35) 

(36) 

where Cz is the constant of integration. The equation 

l3J 
-_=O 
ac2 

*This standard procedure for finding the initial condition 
of q%(t) was applied by many authors previously. See for 
example [4]. 

will yield 
56 

cz = -$p 
421’To 

hence the solution is of the form 

T(x, J’, t) = 
42T0 exp( - 56at/12) 

l+oz[l-exp(-56at/l’)] 

(37) 

(38) 

(b) Rectangular cross-section. Let the boundaries of 

a rectangle be defined by 

x= +1 

y= kb. 
(39) 

For this case we will suppose 

B(x,y) = (;-;je-$) (40) 

and proceeding as in the previous case we find that 

the temperature distribution is 

7-(x, y, t) = 

It is interesting to note that for the linear case 0 = 0, the 

corresponding results obtained from (38) and (41) are 
identical with those obtained by Tsoi in [5], who used 
the approximate method based on Laplace transforms. 
Tsoi reports that for the case of a rectangle his results 
are in good agreement with the exact solution. Un- 

fortunately for more complicated geometry as tri- 
angular for example, the comparison is not possible 
because the exact analytical solution is not available. 

It is reasonable to suppose that the solutions (38) 

and (41) are of some validity for the moderate range 

of parameter V. 
The corresponding results for both cases (a) and (b) 

are presented graphically on Figs. 1 and 2, where the 
influence of nonlinearity is presented also. 

(B) A melting problem 
Consider a semi-infinite solid initially at the melting 

temperature eP whose surface x = 0 is raised suddenly 
to the temperature B. and held there for t > 0. We 
will assume the temperature distribution only in the 
liquid phase. Such a simplification was proposed by 
Goodman [6] and greatly enhances the use of 
penetration depth concept in trial solution as far as 
the latter becomes identical with the location of the 
melting line c(t). 

Introducing dimensionless temperature T = (0 -HP)/ 
(0, -t?,), and assuming a liquid of constant thermo- 
physical properties, the governing equation is given by 
(13), where a modification is made introducing dimen- 
sionless time 

Fo = at/l2 (42) 
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T 

0 0.2 Q4 Q6 08 1.0 
X-Y X/l 

(0) (b) 
FIG. 1. Temperature distribution in the triangular cross- 
section at Fo = at/41’ = 0.08 for linear (CT = 0) and nonlinear 
(o = 0.5) case, (a) temperature distribution in the center line 

(x = y), (b) isothermals T = 0.2 and 0.4. 

l.O- 

T 

0 0.1 0.2 0.3 0.4 0.5 

x/l 

FIG. 2. Temperature distribution in the square 
cross-section at Fo = at/4’ = 0.08 for linear 

(a = 0) and nonlinear (a = 0.5) case. 

where I is a characteristic length. The boundary con- 
dition at x = 0 is 

T(0, Fo) = 1 for Fo > 0 (43) 

while the following two conditions have to be satisfied 
at the interface: 

T(<, Fo) = 0 (44) 

8T L -_= 
8X 

5 for X = ((Fo). 
co@, - 0,) dFo (45) 

In what follows, let T(X, Fo) be represented by a 
quadratic expression 

T= A(;-l)+A,(;-11 (46) 

which satisfies identically condition (44), and where the 
constants A and A i are to be determined. It is evident, 
from (43), that AI = A + 1 so that profile (46) becomes 

T= A&l)+(A+l)(;-1)2 (47) 

where only penetration depth ((Fo) and the constant A 

remain for evaluation in accordance with the condition 
at the interface (45) and the governing heat-conduction 
equation (13). 

Upon substituting (47) into equation (45), one is led 
to the following differential equation for l 

2eg = -Ap (49 

where p = 2(&-B,)c&, which when solved for the 
initial condition ((0) = 0 gives 

where 

5 = 28 J(Fo) (49) 

B = J( - M4). (50) 

It can easily be seen that in this manner all afore- 
mentioned conditions are fulfilled by (47) and (49). But 
as trial function (47) fails to satisfy the governing 
differential equation (13), we may proceed, by forming 
the constraint (16). The temperature profile (47), when 
substituted into (16), and the integration with respect 
to X, this time from X = 0 to X = @Fo) performed, 
yields 

Z = &2A’-A+2)7 

+:(A2-A-2)KW+4(A+1)2K2~ (51) 

where WE [ and K = l/t2 are physical components 
of dT/aFo and d2T/aX2 respectively. We have two 
possibilities to obtain the approximate solution of the 
problem in consideration, i.e. by minimization of the 
constraint (51): (i) with respect to W, and (ii) with 
respect to K. 

(i) Minimization with respect to spatial change of 
temperature K. Condition aZ/dK = 0 together with 
K = l/t2 yields the differential equation 

24(A + 1) 
25g = 2_A’ (52) 

Compatibility of this equation with equation (48) con- 
stitutes the approximate solution to the problem. From 
equations (52) and (48) we get algebraic equation 

pA2-(2p+24)A-24 = 0 

which determines A. 

(53) 

Since, according to (50) A has to be less than zero 
we choose the negative root of quadratic equation (53) 
and obtain 

p= f[~2+48~+144)f-(~+12)]f (54) 

which completes the approximate solution. 
(ii) Minimization with respect to temporal change of 

temperature W. When borne in mind that W = [, 
minimization of constraint (51) with respect to vari- 
ations of W, (dZ/aW = 0) lead up to 

25[ = -10 
A2-A-2 

2At-A+2’ 
(55) 

Insisting on compatibility of equations (55) and (48) 
we obtain the following algebraic equation for A 

2pA3-(p+10)A2+(2p+10)A+20= 0 (56) 

whose negative roots of relevance are plotted in Fig. 3 
for 0 Q p< 3. (The interval considered for comparison 
with the exact solution.) Hence, in order to evaluate 
the approximate solution in this case, one has to use 
Fig. 3 and equations (49) and (50). It is worth noticing 
that the results just obtained in (55) and (56) are 
equivalent to those of the Galerkin method for the same 
trial function (47). 
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-A 

1 I I I I I I 

0 0.5 I 1.5 2 2.5 3 

p 
FIG. 3. Negative roots of equation (56). 

In the exact solution p is related to the melting 

constant /I by [7] : 

P = 2bYB exp(B%rf(B). (57) 

Since the relation /l= /3(p) is of most interest in the 
solution of heat-conduction problems with moving 
boundaries, in Fig. 4 the percentage error E = 

wBapprox - BexactYBexact is plotted against the dimen- 

sionless quantity p defined above. p = 3 was the largest 
value of this parameter considered so that values re- 
quired in practice are covered by this range. 

-2 Ii IsI 
FIG. 4. Percentual error in determination of melt- 
ing constant by different approximate methods. 

The improvement of the accuracy for the approxi- 
mate solutions obtained here, when compared with 
those obtained in [6] using the heat-balance integral, 
and in equation (5.28) of [S] by the help of a rather 
incorrect treatment of the problem, with a trial solution 
of the same form, is self-evident. We also conclude 
that the optimization with respect to temporal change 
of temperature field yields, in this case, much better 
results than the same with respect to spatial change of 
temperature. 

(C) Semi-illfinite body with an arbitrary heatjlux input 

As the last example, consider the case of the 
transient heat-conduction problem in the semi-infinite 

temperature is zero. In order to involve both linear 
and nonlinear boundary conditions the assumption 

will be made that the heat flux at the surface x = 0 

is an arbitrary function of surface temperature 

T, = T(0, t) and time. Hence, the problem can be stated 
mathematically as follows. The governing equation is 
(13) with initial condition 

T(x, 0) = 0 

and boundary condition at x = 0 

ko g +f(T,, t) = 0. 

Following references [6] and [9] let 
cubic temperature profile in the form: 

T= T,(t) 1-G ( 1 
3 

(58) 

(59) 

us assume the 

(60) 

where 4 = q(t) is the penetration depth and both 4 
and T, are unknown functions of time. 

From the boundary condition (59) it follows that 
penetration depth and surface temperature are 

dependent 

3k,, T, = qf (61) 

which indicates that we are going to deal with a 
constrained optimization problem in the appliance of 

the above exposed direct method to find T, and q. In 
the sense of this fact, we will use the Lagrange’s 
multiplier technique, when dealing with the mini- 

mization with respect to physical components of 
temporal change of temperature. 

Let us start by substituting the trial function, 

equation (60), into 

dx (62) 

and performing the indicated integration, one obtains 

where the dot represents differentiation with respect 

to time. 
The next step is to recognize the physical com- 

ponents of temporal and spatial change of temperature 
in this expression so that the minimization procedures 
may be performed straightforwardly. Since 

ST z - = ;;i(q-x)‘+~(q-x)2xcj 
at 

(64) 

it is obvious that temporal change of temperature 
distribution possesses two natural components 

WI = t and W, = cj. (65) 

On the other hand spatial change of temperature 

2 
CX~= 6;(q-x)a 

solid with constant thermal properties whose initial 
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has only one complex: or 

K2. 
4 

T, = $@at)’ = 1.121; (crt)f 
0 0 

In order to demonstrate two possible solutions we will 2. Iff = f(t), equation (74) becomes 
solve the problem minimizing corresponding Gauss’s 
constraint with respect to temporal and spatial change 

T,Y uf z 
2T,TSf~--- = g-, 

k; 
(77) 

of the assumed temperature distribution respectively. f 

(i) Minimization with respect to temporal change. and 
Omitting last term in (63) as irrelevant since it does 3. When f = f( T,), equation (74) yields 
not contain components WI and WZ defined by (65), 
and using (61) whence 

T,2% T,3T;f’2 
2T,T,-+$--,f’-dT 

3koT;-qf-q(f’z+f) = 0 (68) 

where f = af /at and f’ = af IaT,, we have 

z = 3koT,W: wlm+T,fw2' 

7f + 7 35ko 

uf uf2 -4-ww,-:--wz 
ko k& 

Assuming that, in second case, f = fo . t”’ where N is 
an integer, equation (77) becomes 

ufoz t(Ts)2++$:NTs2 = +.-tZN+' (79) 
kg 

+1 

( 

3k w _fw _3koT,Wlf’ 3koE.f 
and reduces to the first case for N = 0. The solution 

0 1 2 - ~ 
f f > 

(69) to equation (79) is 

where I is an unknown Lagrange’s multiplier. T,=f” 
49ut f 

tN 
Minimization with respect to dT/& i.e. 

$=O and &-=0 
Upon separation of variables the differential equation 

(70) for the third case (78) yields 
1 2 

yields the following system of differential equations 
Ts78T,f2-66T,2ff’+18T,3f’2 

3Ok$ T, $I’,+ 5fko T,d-28uf2 
s 0 f3(7f-3T,f’) 

dT,=$. (81) 
0 

+105Akif 1-y = 0 (71) 
( I 

Let us solve this equation for the case of power low 
heat transfer at the body surface into a medium at 
zero temperature, i.e. 

5k; T, z + 2fko T,4 - 7uf2 - 35Ak: f = 0. (72) 
f(T,)=H(T,-To)” 

where H and m are constants. Introducing rl= 1 + Ts/To equation (81) becomes 

(82) 

Upon elimination 1 from equations (71) and (72) one 
is led to 

45k;T,li,+llfko7,ij-49uf2-15k~T,2~f 
f 

s 

q(13-llm+3m2)$-(13-22m+9m2)~2+(9m-11)mr]-3mZ To2m-2H2 
ut. (83) 

1 ~2”+1[3m-(3m-7)~] 
dv=Z k2 

0 

The method of handling (82) applies also to the case 
in which the surface flux is a sum of powers of the 
surface and environment temperatures, and thus to 
heat convection from bounding surface into a fluid at 
temperature Tf, for which the boundary condition is 
(linear case) f = h(T,- T,), and also to the black- 
body radiation into a medium at temperature 
T,: f = 0(x4 - T,‘). Final results obtained from (83) 
are : 

-6koT,2$‘+21ufT,f’ = 0 (73) 

which when combined with equations (68) and (61) 
gives the first order differential equation for the tem- 
perature at the surface 

The initial condition for the problem is T,(O) = 0. 
There are three cases in which equation (74) can be 
integrated analytically: 

1. f = const. In this case equation (74) reduces to 

(75) 

(a) form=4;H=o 

T:a2 7 
-mat = 1 c ai$+bln 

12-5~ 

@i V8 i=O 
p++ 

7V 
(84) 

where 

a0 = 317 as = -275131104 
aI = -40149 a6 = - 13751248832 
a2 = 1071252 a7 = -687511492992 

a3 = - 1 l/360 b = -34375117915904 
a4 = - 5513456 c = 376528644/13168189440 
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(b) for m = 2 

+&ln?+%. (85) 

In linear case (m = 1) the result is 

hZ 

P= 

3q2-12v+9 4?7+3 

2112 
+&Jln ----_lnrj (86) 

I 

where q = 1 - Ts/Tf since the boundary condition is 
taken of the form f = h( TI - &). 

The discussion of the results given above will take 
place after solving the same problems using the second 
possibility, viz. minimizing the constraint (63) with 
respect to the component of spatial change of 
temperature. 

(ii) Minimization with respect to spatial change. This 
time omission of terms not containing component K 
defined by (67) reduces constraint (63) to the following 
expression of relevance: 

z = -~KT;_&j+l2KZ. (87) 
4 4 

Optimization condition 

C?Z 
-0 E-- 

together with (67) will yield, upon using (61) and (68), 
the differential equation 

63T.T;-2+f’+f)= 40% (89) 

determining surface temperature. 
If we consider, as above, the cases for which equation 

(89) is integrable, the following reductions are evident: 

1. .f = const. 

with the solution 

T, = 1.12++ (91) 
” 

2. f = f(t) 

2,,_+,g 
0 

3. f=fKl 

(92) 

a% s L 14T,f -6T;f’ 

0 f3 
dT,=;. (93) 

0 

As previously in the second case we choose f = fo. tN 
to get the solution of (92) 

(94) 

Assuming againf(T,) = To”. H. rf’ where q = 1+ T,/TO 
we obtain the solution for the third case in the form 

& 
s 

“(7 - 3m)$ + (6m- 7)~ - 3m To=“- 2H2 
1 r? 

2m+1 dr] = -at (95) 
kd 

which can very easily be integrated for particular values 
of m. Thus, 

(a) form = 4; H = D 

To6a2 1 
pert = @&+&/+&)IZ)+& 

ki? 
(96) 

(b) for m = 2 

To2H2 1 
7Clt = ~(~-~?-;rl*)+~ (97) 

0 

(c) for m = 5/4 

To112H2 1 
-----at = $-&&+&*)+~. 

k: 
(98) 

Finally in the case of heat convection boundary con- 
dition f (TJ = h(Tf - T,) from equation (93) one obtains 

-A (99) 

where q = 1 - TJT, 
Let us now proceed with the discussion and the 

comparison of the results. One thing is obvious--the 
closed form solutions obtained by minimization of 
Gauss’s constraint with respect to the component of 
spatial change of temperature distribution are more 
attractive since they are of a rather less complicated 
form. To evaluate the accuracy of the results we are 
going to compare all of them with the exact solutions 
for surface temperature. 

In the case of constant heat flux the exact solution 
is known to be T, = 1.128(f/ko)(crt)i, which when 
compared with equations (76) and (91) indicates the 
improvement of the result obtained by the help of 
minimization with respect to K. But when compared 
with the result 1.1 5(f/ko)((wt)* of application of the in- 
tegral method [6] to the same problem, both results 
are better. 

To compare the results for the case when heat flux 
is the power function of time (f = fo. tN) we calculate 

7; approx. r(N) = ___ = ___ 

T CXdCf 

W+:) . R(N) 

l-(N+ 1) 
(100) 

where R(N) = 149/(45N + 39)]‘j2 for the approximate 
solution (80) or R(N) = [80/(72N+63)]‘!’ if (94) is 
considered. The ratios (100) are given in Table 1 for 
the values of power N from 0 to 12. In the same table 

Table I 

Ratios r(N), equation (loo), corresponding to: 
N Equation Equation 

(80) (94) 161 191 

0 0.993 0.999 1.023 1.000 
1 1.015 1.023 1.085 1.085 
2 1.024 1.033 1.108 1.117 
3 1.029 1.038 1.119 1.133 
4 1.032 1.041 1.126 1.143 
5 1.033 1.043 1.131 1.149 
6 1.035 1.045 1.134 1.154 
8 1.037 1.047 1,139 1.160 

10 1.038 1.048 1.141 1.164 
12 1.073 1.049 1.144 1.168 
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the corresponding ratios for the approximate solutions nonlinear heat-conduction problems. Usually, in the 
obtained by variational [9] and integral [6] method case of nonlinear analysis, it pertains to a high accuracy 
are also listed. when compared with the other approximate methods. 

Comparison of the approximate solutions with the 
numerical ones [lo], for the case when the heat flux 
is a power low function of the surface temperature, is 
evident from Fig. 5. The dots represent approximation 
equations (96) (97) and (98) for m = 4, 2 and 5/4 
respectively. If one superimposes the results of 
Goodman [6], or Vujanovic and Strauss [9] (available 
only for m = 4), or those obtained by minimization 
with respect to dT/dt in this paper, it may be concluded 
that all of them are less accurate. 

2. A common feature of all approximate methods 
in heat transfer, including the method presented, is that 
the solution of a problem should be selected to some 
extent a priori. The choice of the form of a solution 
which contains some parameters that should be deter- 
mined by the help of the Gauss’s method depends upon 
all the information available from empirical, exper- 
imental, intuitive, etc. data. 

3. Our aim has been to demonstrate two possibilities 
for obtaining approximate solutions from the same 
Gauss’s constraint. The question as to which of the 
two possible approximate solutions should be taken is 
to be decided by considering the mean square residual 
[l l] (p. 388) in the form 

- Exact 

0.0 This paper 

c44- 

0.2 - 

-2 -I 0 I 2 

FIG. 5. Surface temperature of the semi-infinite 
solid with surface flux the mth power of the tem- 
perature. The dots represent approximation 

equations (96), (97) and (98). 

When the solution of equation (99) is compared with 
the exact one, and the percentage error 

.E = lOO(%ppron. - %xact)lYlexact 

is calculated it turns out that E = 3%, for ( TJTl)approx, = 

0.8, which reduces to 1% for (~/Qapprox. = 0.5, while 
for (T,/Tf) approx. < 0.3, E < 1%. Doing the same with 
equation (86): E = 6.4% at ( TJTJ)approx, = 0.8; E = 1% 

at (TslTf)approx. = 0.4 and less than 0.5% for 

K/q&ox. c 2.3. 
Thus, in all cases the solutions here obtained differ 

only slightly from the exact ones. Further, the im- 
portant conclusion is that the result obtained by 
minimization of Gauss’s constraint with respect to the 
component of spatial change of temperature distri- 
bution are always more accurate, although of rather 
less complicated form. 

DISCUSSION 

In conclusion several remarks would be of interest: 

1. The method we have presented is quite useful in 
the search for approximate solutions of linear and 

z= 
ss 

*’ (X-Y)‘dI’dt. (101) 
lo v 

Naturally, the value of Z defined by (101) is equal to 
zero for the exact solution. Hence, the better solution 
is that one for which Z has the smallest value. It 
should be pointed out that the same criteria can be 
employed for evaluating the accuracy of any approxi- 
mate solution obtained by some other approximate 
method. 

4. The extension of the method presented in this 
paper on some more elaborated mathematical schemes 
as for example the method of finite elements is possible 
and will be reported elsewhere. 

5. This method can be extended also in a straight- 
forward way to handle the numerous problems arising 
in transport phenomena. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 
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APPLICATION DU PRINCIPE DE MOINDRE CONTRAINTE DE GAUSS AU 
PROBLEME DU TRANSFERT THERMIQUE NON-LINEAIRE 

R&sum&On prbente une mCthode approchke directe de rtsolution des probltmes de conduction 
thermique linitaires et non-IinCaires, bask sur le principe de moindre contrainte de Gauss. Dans chaque 
cas particulier, le probleme se rtduit j la minimisation algbbrique d’une forme quadratique par rapport 
B un ensemble de paramktres physiques. Quelques exemples concrets mettent en Cvidence I’efficacitt- et la 

prCcision de cette nouvelle m&hode. 

DIE ANWENDUNG DES GAUSS’SCHEN PRINZIPS DES KLEINSTEN ZWANGES 
AUF DIE NICHTLINEAREN WARMEUBERTRAGUNGSPROBLEME 

Zusammenfassung-Es wird eine auf dem GauB’schen Prinzip des kleinsten Zwanges gegriindete, direkte 
NIherungsmethode fiir die LGsung linearer und nichtlinearer WSirmeleitungs probleme dargestellt. In 
jedem einzelnen Fall wird das Problem auf die algebraische Minimisation der quadratischen Form in 
Bezug auf einen bestimmten Komplex der physikalischen Parameter zurlckgefiihrt. Anhand einiger 

konkreter Beispiele wird die Wirksamkeit und Genauigkeit dieser Methode dargelegt. 

I-IPMMEHEHME nPMHUMIIA HAMMEHbIJIErO nPMHYXflEHMJI I-AYCCA 
K IIPOGJIEME HEflMHEfiHOTO IIEPEHOCA TEI-IJIA 

AmmTauHR- B pa6oTe IIpenCTaBJIeH ElpSlMOii MeTOLl rIpH6JIkiXCeHHOrO p’2LUeHMn JlMH&HblX H He- 

,I&%HeiiHbIX 3anaY TeIIJIOIIpOBO~HOCTH, OCHOBBHHbIfi Ha IIpMHLWIe HaAMeHbUerO II,,HHyWWHHR 

hyCCa. B KSKQOM YaCTHOM CJlyYae npo6nehla CBO,WTCII K MHHHMH3WWH KBa,lpaTHYHOti @OPMbl 

no HeKoTopoMy tcoh4nneKcy @3MqecKMx napaMeTpos. Ha HeCKOJlbKMX KOHKPCTHblX nfJHMepaX 

nOKa3aHa 3@$eKTMBHOCTb M TOYHOCTb HOBOrO MeTOn& 


